# República Federativa do Brasil ADMILSON FERNANDO SOARES DA SILVA



Tradutor Público e Intérprete Comercial – Idioma Inglês

#### TRADUÇÃO OFICIAL

(Decreto Federal Nº 13.609/43)

#### Livro CXXXVIII

#### I-24.360/20

Certifico pelo presente que foi apresentado a mim, ADMILSON FERNANDO SOARES DA SILVA, Tradutor Público e Intérprete Comercial, um documento em idioma inglês, do qual, em virtude de meu ofício, procedo à tradução para o vernáculo, no seguinte teor:

[Karco Engineering]

TR-P38032-01-NC

### Relatório de Ensaio para: SPIG Industries, LLC Terminal de Entrada SGET



REALIZADO EM CONFORMIDADE COM O(A):

Manual de Avaliação de Componentes de Segurança (MASH 2016)

Ensaio 3-35

ELABORADO PARA: SPIG Industries, LLC 14675 Industrial Park Road Bristol, Virgínia 24202

RELATÓRIO DE TESTE Nº: TR-P38032-01-NC

DATA DO RELATÓRIO: 20 de agosto de 2018

DATA DO TESTE: 12 de março de 2018

### KARCO Engineering, LLC. TL-371

Automotive Safety and Testing Facility 9270 Holly Road, Adelanto, CA 92301 Tel.: (760) 246-1672 Fax: (760) 246-8112

[Laboratório de teste credenciado pela IAS]

www.KARCO.com

A KARCO Engineering compila a presente publicação somente para fins informativos. Os achados e conclusões aqui expressos são dos autores, não necessariamente de nenhuma outra instituição. A KARCO Engineering presta somente serviços de realização de ensaios, não participando de consultoria, projeto ou fabricação de nenhum produto de segurança automobilística. A KARCO não garante, supervisa ou monitora a conformidade legal dos produtos ou serviços, salvo por concordância expressa e por escrito. Pela própria natureza, os ensaios, análises e outros serviços realizados pela KARCO têm limitações de escopo e estão sujeitos a variações nas medições previstas. Nenhuma atividade realizada pela KARCO Engineering exonera o fabricante das responsabilidades pelo produto ou outras. Os resultados, achados e conclusões expressas na presente publicação só se referem aos itens testados na situação específica simulada no ensaio.

Livro CXXXVIII

Realizado Por: [a.] ilegível] Sr. Robert L. Ramirez Engenheiro de Projetos

Relatório Por: [a.] ilegível] Sr. Robert L. Ramirez Engenheiro de Projetos

Revisão Por: [a.] ilegível] Sr. Andrew J. Espindola

Gerente de Garantia de Qualidade

Aprovado Por: [a.] ilegível] Sr. Michael L. Dunlap Diretor de Operações

Data de Aprovação: 20 de agosto de 2018

#### HISTÓRICO DE VERSÕES

#### TR-P38032-01

| Revisão | Data       | Descrição                    |
|---------|------------|------------------------------|
| -NC     | 20/08/2018 | Relatório de ensaio Original |

### PÁGINA DE DOCUMENTAÇÃO DO RELATÓRIO TÉCNICO

| 1. Relatório nº                                    | 2. Licença Governamental nº | 3. Catálogo de Destinatários nº            |  |
|----------------------------------------------------|-----------------------------|--------------------------------------------|--|
| TR-P38032-01-NC                                    |                             |                                            |  |
| 4. Título e Subtítulo                              |                             | 5. Data do Relatório                       |  |
| Relatório de ensaio Original                       |                             | 20 de agosto de 2018                       |  |
| Terminal de Entrada SGET da SPIG Industries, LLC   |                             | 6. Código da Instituição Executora         |  |
| ensaio 3-35 previsto no manual MASH 2016           |                             | KAR                                        |  |
| 7. Autor(es)                                       |                             | 8. № do Relatório da Instituição Executora |  |
| Sr. Balbino A. Beltran, Gerente de Programa, KARCO |                             | TR-P38032-01-NC                            |  |
| 9. Nome e Endereço da Instituição Executora        |                             | 10. Unidade de Trabalho nº                 |  |

| KARCO Engineering, LLC.<br>9270 Holly Rd.<br>Adelanto, CA 92301 | 11. Contrato ou Concessão nº                                        |
|-----------------------------------------------------------------|---------------------------------------------------------------------|
| 12. Nome e Endereço da Agência Patrocinadora                    | 13. Tipo de Relatório e Período Abrangido                           |
|                                                                 | Relatório de Ensaio Final, 12 de março - 20 de agosto de 2018       |
|                                                                 | 14. Código da Agência Patrocinadora                                 |
| 15. Notas Suplementares                                         |                                                                     |
| 16. Resumo                                                      | ésimo terminal de entrada COET de CDIC Industrias III.C. O terminal |

Realizou-se 1 (um) Ensaio Nível 3, Ensaio 35 (3-35), no espécime terminal de entrada SGET, da SPIG Industries, LLC. O terminal recebeu o impacto de uma caminhonete RAM 1500 2012 4 portas. O ensaio foi realizado pela KARCO Engineering, LLC. em Adelanto, CA, na data de 12 de março de 2018.

O veículo de ensaio colidiu com o terminal de entrada SGET a uma velocidade de 95,97 km/h (59,63 mph) e a um ângulo de impacto de 25,2°. O veículo impactou o artigo em seu ponto de comprimento necessário e o veículo foi redirecionado. O veículo saiu dentro da caixa de saída e atingiu o sistema uma segunda vez em direção ao fim da proteção. Os danos ao sistema foram do poste 1 até o poste 7.

O veículo de ensaio sofreu danos na parte dianteira do lado do passageiro. O conjunto dianteiro da roda foi danificado e o pneu foi perfurado. O lado do passageiro do veículo foi danificado em seu comprimento. Não houve penetração do compartimento dos ocupantes, não sendo ultrapassados os limites de deformação.

O SGET da SPIG Industries, LLC atendeu a todas as exigências do Ensaio 3-35 do MASH 2016.

| 17. Palavras-Chave        |                                | 18. Instrução para Distribuição |           |
|---------------------------|--------------------------------|---------------------------------|-----------|
| SPIG Industries, LLC      |                                |                                 |           |
| SGET                      |                                |                                 |           |
| Terminal                  |                                |                                 |           |
| MASH 2016                 |                                |                                 |           |
| 3-35                      |                                |                                 |           |
| 19. Classificação de      | 20. Classificação de Segurança | 21. Nº de Páginas               | 22. Preço |
| Segurança deste relatório | desta página                   |                                 |           |
|                           |                                | 73                              |           |

### <u>Índice</u>

| 1. INTRODUÇÃO                                   | 1    |
|-------------------------------------------------|------|
| 1.1 DECLARAÇÃO DE PROBLEMA                      |      |
| 1.2 OBJETIVO                                    | 1    |
| 1.3 ESCOPO                                      | 1    |
| 2. DETALHES DO SISTEMA                          | 2    |
| 2.1 ARTIGO DE TESTE                             | 2    |
| 3. EXIGÊNCIAS DO TESTE E CRITÉRIOS DE AVALIAÇÃO | 4    |
| 3.1 EXIGÊNCIAS DO TESTE                         |      |
| 3.2 CRITÉRIOS DE AVALIAÇÃO                      | 4    |
| 3.3 EXIGÊNCIAS DE RESISTÊNCIA DO SOLO           |      |
| 4. CONDIÇÕES DE ENSAIO                          |      |
| 4.1 INSTALAÇÃO DE ENSAIOS                       |      |
| 4.2 REBOQUE DO VEÍCULO E SISTEMA DE ORIENTAÇÃO  | 6    |
| 4.3 VEÍCULOS DE PROVA                           |      |
| 4.4 SISTEMAS DE AQUISIÇÃO DE DADOS              |      |
| 4.4.1 INSTRUMENTAÇÃO DO VEÍCULO DE ENSAIO       |      |
| 4.4.2 CALIBRAÇÃO                                | 8    |
| 4.4.3 DOCUMENTAÇÃO FOTOGRÁFICA                  | 8    |
| 4.4.4 INCERTEZA SÓBRE AS MEDIÇÕES               |      |
| 5. RESULTADOS DO TESTE DE COLISÃO               | . 10 |
| 5.1 TESTE ESTÁTICO EM SOLO                      | 10   |
| 5.2 CONDIÇÕES METEOROLÓGICAS                    | 10   |
| 5.3 TESTE 3-35 DO MASH 2016                     |      |
| 5.4 DESCRIÇÃO DO TESTE                          | 11   |
| 5.5 DANOS AO ARTIGO DE TESTE                    | 11   |

197 Livro CXXXVIII I-24.360/20 5.6 DANOS AO VEÍCULO DE ENSAIO.......11 APÊNDICE A FOTOGRAFIAS......A APÊNDICE B PLOTAGENS DE DADOS.....B APÊNDICE C INFORMAÇÃO SOBRE A RESISTÊNCIA DO SOLO......C APÊNDICE D DOCUMENTOS DO FABRICANTE......D APÊNDICE E FOTOGRAFIAS SEQUENCIAIS .....E APÊNDICE F REFERÊNCIAS.....F Índice de Tabelas Tabela 2 Critérios de Avaliação do MASH 2016 para Terminais e Atenuadores de Impacto ........ 5 **Índice de Figuras** Última Página do Relatório.....F-1

| Quantidade Aplicação Comum |                          | Unid. Padrão         | Unidade Métrica | Multiplicar Por |
|----------------------------|--------------------------|----------------------|-----------------|-----------------|
| Massa                      | Peso do Veículo          | lb                   | kg              | 0,4536          |
| Velocidade Linear          | Velocidade de Impacto    | milhas/h             | km/h            | 1,609344        |
| Comprimento ou Distância   | Medições                 | pol.                 | mm              | 25,4            |
| Volume                     | Sistemas de Combustíveis | gal.                 | litro           | 3,785           |
| Volume                     | Pequenos Fluidos         | onças                | mL              | 29,574          |
| Pressão                    | Calibração de Pneus      | lbf/pol <sup>2</sup> | kPa             | 6,895           |
| Temperatura                | Uso Geral                | °F                   | °C              | =(Tf -32)/1,8   |
| Força                      | Forças Dinâmicas         | lbf                  | N               | 4,448           |
| Momento                    | Torque                   | lbf-pé               | N•m             | 1,355           |

### 1. Introdução

#### 1.1 Declaração Inicial

A finalidade do presente relatório é detalhar o desempenho de segurança do Terminal de Entrada de Direcionamento (SGET) da SPIG Industries, LLC em ensaio realizado sob a ótica dos critérios estabelecidos no *Manual de Avaliação de Componentes de Segurança* (MASH 2016).

#### 1.2 Objetivo

O principal objetivo deste projeto foi avaliar o desempenho de segurança do SGET ao ser submetido a ensaios de colisão em escala real em conformidade com o Nível 3 do MASH 2016, Ensaio 35 (3-35), para terminais de redirecionamento.

#### 1.3 Escopo

O projeto consiste em ensaios dinâmicos de colisão em escala real do terminal de entrada SGET. O sistema foi submetido ao Ensaio 3-35 do MASH 2016. O Ensaio 3-35 foi realizado com um veículo de ensaio 2270P utilizado para impacto contra o sistema a um ângulo nominal de 25º, com o veículo atingindo o sistema no poste 3.

#### 2. Detalhes do Sistema

#### 2.1 Artigo de Ensaio

O Terminal de Entrada de Redirecionamento SPIG (SGET) trata-se de um tratamento dado a defensas para absorção de energia, projetado para reduzir a gravidade de impactos frontais em defensas com perfil do tipo "W". O SGET dissipa o impacto pela lâmina por meio do cabeçote de impacto, saindo pelo lado do sistema oposto ao tráfego. O sistema SGET era composto de 1 (um) cabeçote de impacto, 1 (um) conjunto do poste 1, 1 (um) sistema de cabo de ancoragem, 1 (um) painel especializado e 7 (sete) postes secundários. Os postes tinham espaçamento de 1,9 m (75,0 pol.) no centro, com as emendas da lâmina localizadas na seção dos postes. O comprimento total do terminal era de 15,2 m (50,0 pés). O sistema foi conectado a 32,4 m (106,3 pés) de defensa padrão, com emendas a meio-vão. É possível instalar o sistema com altura da lâmina de 31 pol. ± 1 pol. O sistema para ensaio foi instalado com altura da defensa de 762 mm (30,0 pol.) para aumentar o risco de o veículo passar por cima da lâmina. O ensaio do sistema foi realizado com um chip RFID conectado ao cabeçote de impacto.

O cabeçote de impacto localiza-se acima do painel especializado, preso no primeiro poste por meio de 2 (dois) parafusos sextavados de 76 mm (3,0 pol.) de comprimento e respectivas arruelas. O cabeçote de impacto tinha 1,6 m (64,0 pol.) de comprimento, com calha traseira de 127 mm (5,0 pol.) de largura. A face frontal do cabeçote de impacto tinha 610 mm (24,0 pol.) de altura e 432 mm (17,0 pol.) de largura. Soldada atrás da face frontal do cabeçote de impacto, a 229 mm (9,0 pol.), havia uma chapa de montagem para poste de aço, de 16 mm (0,625 pol.) de espessura. A calha consistia em um perfil "C" de 6 mm (0,25 pol.). A ponta traseira do cabeçote de impacto afunilava-se a uma altura geral de 343 mm (13,5 pol.). Havia 2 (duas) alças de 13 mm (0,5 pol.) de espessura soldadas à ponta traseira do cabeçote de impacto.

O poste 1 tratava-se de um poste de madeira inserido em um alicerce tubular de aço, medindo, uma vez montado, 2,7 m (8,9 pés) de comprimento. A conexão entre o poste de madeira e o alicerce tubular era feita por meio de um parafuso sextavado 0,625 pol. de 254 mm (10,0 pol.) de comprimento. O alicerce tubular de aço tinha medidas de 152 mm (6,0 pol.) por 203 mm (8,0 pol.), com 1,8 m (6,0 pés) de comprimento. A parte de madeira do poste 1 tinha medidas de 140 mm (5,5 pol.) por 188 mm (7,5 pol.), com 1,3 m (4,2 pés) de comprimento. A parte de madeira apresentava 2 (dois) furos de 19 mm (0,75 pol.) executados a 330 mm (13,0 pol.) de profundidade para montagem chapa e bloco de impacto. A chapa e bloco de impacto foram instalados no lado principal do poste 1 com 1 (um) parafuso para defensa de 0,625 pol. e 14,0 pol. de comprimento, com a respectiva arruela e porca. Não há conexão da lâmina com o poste 1 e também não há barreira de separação.

O conjunto do cabo de ancoragem estava preso ao poste 1 por meio de uma chapa de apoio e ao painel especializado por meio de garras para defensas. Passou-se o cabo por um furo de 64 mm (25,5 pol.) localizado na base do poste 1. A chapa de apoio tinha 16 mm (0,625 pol.) de espessura com 2 (dois) furos de 13 mm (0,5 pol.) na parte superior, usados para fixação da chapa no poste 1, por meio de 2 (dois) parafusos sextavados grandes. A extremidade traseira do conjunto do cabo ia na garra para defensas. A garra tinha 432 mm (17,0 pol.) de comprimento, com 6 (seis) dentes para travamento no painel especializado. Entre o painel especializado e a garra, havia um painel de reforço de 432 mm (17,0 pol.). O painel de reforço prendia-se na lâmina por meio de 6 (seis) parafusos de 1/2 pol. de 1,0 pol. de comprimento, 12 arruelas, 6 (seis) arruelas de pressão e 6 (seis) porcas. O painel especializado apresentava seção padrão bitola 12 em perfil "W", com 3,8 (12,5 pés) de comprimento e 6 (seis) entalhes retangulares executados para a garra. Os outros 3 (três) paineis da seção do terminal eram paineis para defensa MGS em padrão bitola 12, de 3,8 m (12,5 pés) de comprimento.

Os postes de 2 a 8 eram postes secundários, de 1,8 m (6,0 pés) de comprimento. Os postes secundários apresentavam 2 (dois) furos de 13 mm (0,5) realizado em ambos os flanges, a 787 mm (31,0 pol.) de profundidade da parte superior do poste. Havia um canal suspenso de 76 mm (3,0 pol.) por 76 mm (3,0 pol.) e 2032 mm (80,0 pol.) de comprimento conectado entre os postes 1 e 2. A extremidade dianteira ligava-se ao ponto de conexão entre o alicerce tubular e o poste de madeira. A extremidade traseira da barra de suspensão conectava-se ao poste 2 por meio de 2 (dois) parafusos 1,5 pol. de 2,0 pol. de comprimento, 2 (duas) arruelas de pressão e 2 (duas) porcas. O poste 2 conectava-se ao painel especializado por meio de parafuso e porca 0,625 pol. padrão para defensa, de 1,25 pol. de comprimento, sem barreira de separação. Os postes de 3 a 8 usavam barreiras de separação em madeira entalhada a 203 mm (8,0 pol.) de profundidade e parafuso 0,625 pol. para defensa, de 10,0 pol. de comprimento.

Instalado após o terminal, havia 1 (um) painel de 2,9 m (9,4 pés) para fazer a transição das emendas até a localização a meio-vão. Após o painel de transição, havia 17 (dezessete) postes de aço galvanizado W6x8,5, 17 (dezessete) blocos em madeira entalhada a 203 mm (8,0 pol.) de profundidade e 6 (seis) paineis MSG de 3,8 m (12,5 pés). As lâminas eram emendadas com parafusos e porcas 5/8 pol. para emendas de defensa, de 1,25 pol. de comprimento. As lâminas conectavam-se aos postes por meio de parafusos e porcas 5/8 pol. para defensa, de 10,0 pol. de comprimento. Utilizou-se um segundo painel de transição de 2,9 m (9,4 pés) antes do elemento de ancoragem traseiro, concluindo-se a instalação com um elemento de ancoragem do tipo SFT.

O Apêndice A do presente relatório apresenta fotografias da unidade para ensaio e de sua instalação. Os projetos do fabricante estão disponíveis no Apêndice D. Um conjunto completo de projetos do fabricante está disponível no KARCO CD-R 2018-4897.

### 3. Exigências do Ensaio e Critérios de Avaliação

### 3.1 Exigências do Ensaio

O sistema SGET descrito neste relatório recebeu a classificação de terminal de redirecionamento. O MASH 2016 recomenda uma série de até 9 (nove) ensaios de colisão em escala real para avaliar os terminais de redirecionamento. O Ensaio 3-36, contudo, tem seu uso previsto em sistema que conte com uma rígida estrutura de apoio, não sendo válido para o sistema em questão. O Ensaio 3-38 tem seu uso previsto em dispositivo por etapas, não sendo válido para o sistema em questão. Assim sendo, não foram realizados os Ensaios 3-36 e 3-38.

Tabela 1 Matriz do Ensaio Nível 3 do MASH 2016 para Terminais de Redirecionamento

| Nominal (graus) Avaliação |                                                                                           |
|---------------------------|-------------------------------------------------------------------------------------------|
| 0 CDEHIN                  |                                                                                           |
| ٥,٥,١,١,١,١               |                                                                                           |
| 0 C,D,F,H,I,N             |                                                                                           |
| 5-15 C,D,F,H,I,N          |                                                                                           |
| 5-15 C,D,F,H,I,N          |                                                                                           |
| 15 C,D,F,H,I,N            |                                                                                           |
| 25 A,D,F,H,I              |                                                                                           |
| 25 A,D,F,H,I              |                                                                                           |
| 25 CDEHIN                 |                                                                                           |
| 25 C,D,F,⊓,I,N            |                                                                                           |
| 0 C,D,F,H,I,N             |                                                                                           |
|                           | 5-15 C,D,F,H,I,N 5-15 C,D,F,H,I,N 15 C,D,F,H,I,N 25 A,D,F,H,I 25 A,D,F,H,I 25 C,D,F,H,I,N |

#### 3.2 Critérios de Avaliação

Os critérios de avaliação de um ensaio de colisão de veículo em escala real baseiam-se em três critérios: (1) Adequação Estrutural, (2) Risco aos Ocupantes e (3) Reação Veicular Pós-Impacto. Os critérios de adequação estrutural avaliam a capacidade do item de permitir o redirecionamento, a penetração controlada ou a parada controlada do veículo. O risco aos ocupantes avalia o grau de perigo aos ocupantes do veículo em colisão. A reação veicular pós-impacto é uma medida do potencial do veículo de causar uma colisão secundária com outros veículos ou objetos fixos.

Também foram calculados, para avaliação dos ensaios de colisão, os valores de risco aos ocupantes denominados Desaceleração da Cabeça Após Impacto (PHD), Velocidade Teórica de Impacto à Cabeça (THIV) e Índice de Gravidade de Aceleração (ASI).

Tabela 2 Critérios de Avaliação do MASH 2016 para Terminais e Atenuadores de Impacto

| Fatores de<br>Avaliação |    | Critérios de Avaliação                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                               |            |  |  |
|-------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|
| Adequação<br>Estrutural | Α  | O artigo de teste deve conter e redirecionar o veículo ou fazer com que o veículo pare de forma controlada, o veículo não deve adentrar por baixo, nem passar por cima da instalação, ainda que seja aceitável a deflexão controlada do artigo de teste. |                                                                                                                                                                                                                                                                               |            |  |  |
|                         | D. | apresentar potencial de pe                                                                                                                                                                                                                               | Os elementos, fragmentos ou outros resíduos soltantes do artigo de ensaio não podem penetrar ou apresentar potencial de penetração no compartimento de ocupantes ou apresentar perigo indevido a putros elementos do tráfego, pedestres ou trabalhadores em zona de trabalho. |            |  |  |
|                         | F. | O veículo deve continuar na posição normal, durante e após a colisão. Os ângulos longitudinal e latera máximos não devem ultrapassar os 75 graus                                                                                                         |                                                                                                                                                                                                                                                                               |            |  |  |
|                         | H. | As velocidades de impacto aos ocupantes (OIV) devem atender ao seguinte:                                                                                                                                                                                 |                                                                                                                                                                                                                                                                               |            |  |  |
| Risco aos               |    | Limites de Velocidade de Impacto aos Ocupantes m/s (pé/s)                                                                                                                                                                                                |                                                                                                                                                                                                                                                                               |            |  |  |
| Ocupantes               |    | Componente                                                                                                                                                                                                                                               | Preferencial                                                                                                                                                                                                                                                                  | Máximo     |  |  |
|                         |    | Longitudinal e Lateral                                                                                                                                                                                                                                   | 9,1 m/s                                                                                                                                                                                                                                                                       | 12,2 m/s   |  |  |
|                         |    | Longitudinal e Lateral                                                                                                                                                                                                                                   | (30 pés/s)                                                                                                                                                                                                                                                                    | (40 pés/s) |  |  |
|                         | l. | A desaceleração dos ocupantes deve atender aos seguintes limites:                                                                                                                                                                                        |                                                                                                                                                                                                                                                                               |            |  |  |
|                         |    | Limites de Desaceleração dos Ocupantes (G)                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                               |            |  |  |
|                         |    | Componente                                                                                                                                                                                                                                               | Preferencial                                                                                                                                                                                                                                                                  | Máximo     |  |  |
|                         |    | Longitudinal e Lateral                                                                                                                                                                                                                                   | 15,0 G                                                                                                                                                                                                                                                                        | 20,49 G    |  |  |

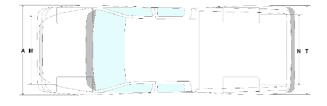
#### 3.3 Exigências de Resistência do Solo

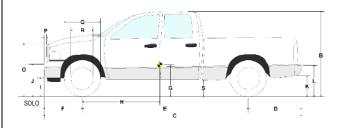
Em consonância com o Apêndice B do MASH 2016, a resistência do solo deve ser verificada antes da realização de qualquer ensaio de colisão em escala real em instalações de solo. Dois postes W6x16 instrumentados encontram-se instalados próximos à área de impacto da instalação. Os postes são retirados antes do ensaio em escala real, a fim de garantir que o solo atenda a 90% do valor mínimo estabelecido.

### 4. Condições de Ensaio

#### 4.1 Instalação de Ensaios

Esta série de ensaios foi realizada na instalação de ensaios da KARCO Engineering em Adelanto, Califórnia.


#### 4.2 Reboque do Veículo e Sistema de Orientação


A pista de reboque trata-se de uma superfície contínua construída com concreto armado medindo 213,4 m (700,0 pés) de comprimento, 4,3 m (14,0 pés) de largura e 152 mm (6.0 pol.) de espessura. Embutido na pista está um trilho de aço para orientação do veículo. A propulsão para reboque do veículo é feita por um caminhão de 1 tonelada usando um sistema de polias de 1:2. O veículo de ensaio é rebocado em direção ao artigo de ensaio por uma corda de *nylon* presa a um cabo de aço de 10 mm (0,375 pol.). A abraçadeira solta-se do cabo mediante o contato com um mecanismo de liberação posicionado para permitir que o veículo de ensaio proceda com seu próprio momento linear, percorrendo no máximo 7,6 m (25,0 pés) antes de colidir contra o artigo de ensaio.

#### 4.3 Veículos de Ensaio

Para o ensaio 3-35, foi utilizado um veículo de ensaio 2270P. O veículo era uma caminhonete RAM 1500 2012 4 portas, com motor frontal, transmissão automática e tração traseira. O veículo de ensaio 2270P apresentava um peso padrão e inercial de ensaio de 2.253,5 kg (4.968,0 lbs) e 2.271,0 kg (5.006,6 lbs), respectivamente. Não se utilizou um Dispositivo Antropomórfico de Ensaio (ATD) para este ensaio. Podem ser encontradas informações sobre o veículo de ensaio na Figura 1.

| Data do Ensaio                            | 12/03/2018 | Projeto nº                        | <u>P38032-01</u>            | Ano | <u>2012</u>   |
|-------------------------------------------|------------|-----------------------------------|-----------------------------|-----|---------------|
| Marca                                     | RAM        | Modelo                            | 1500                        | Cor | <u>Branca</u> |
| Tamanho dos Pneus<br>Calibração dos Pneus | P265/70R17 | N° Chassi do Veículo<br>Hodômetro | 1C6RD6FP2CS28<br>145.818 mi |     |               |





Danos Anteriores ao Veículo.... Nenhuma

|          | Peso Bruto do Veiculo |           |  |
|----------|-----------------------|-----------|--|
| Γotal    |                       | 6.700 lbs |  |
| rontal   |                       | 3.700 lbs |  |
| Francira |                       | 3 000 lbc |  |

| Tipo de Motor       | <u>V8</u>         |
|---------------------|-------------------|
| Tamanho do Motor    | <u>4.7 L</u>      |
| Tipo de Transmissão | <u>Automática</u> |

| Tipo de Manequim  | Nenhuma    |
|-------------------|------------|
| Massa do Manequim | <u>N/A</u> |
| Posição do Banco  | N/A        |

| N° | Polegadas | mm   | N°  | Polegadas | mm   | N° | Polegadas | mm   | N° | Polegadas | mm   |
|----|-----------|------|-----|-----------|------|----|-----------|------|----|-----------|------|
| Α  | 78,7      | 2000 | F   | 40,9      | 1040 | K  | 18,1      | 460  | Р  | 5,1       | 130  |
| В  | 73,6      | 1870 | G   | 28,3      | 720  | L  | 29,1      | 740  | Q  | 30,5      | 775  |
| С  | 228,7     | 5810 | Н   | 64,6      | 1640 | M  | 68,3      | 1734 | R  | 18,5      | 470  |
| D  | 47,4      | 1205 | - 1 | 12,4      | 315  | N  | 67,9      | 1725 | S  | 13,1      | 334  |
| Е  | 140,4     | 3565 | J   | 23,6      | 600  | 0* | 44,1      | 1120 | Т  | 79.5      | 2020 |

#### MASSA DO VEÍCULO DE TESTE

|               | Recebida (lbs) |          |        | Iner      | cial no Ensaio | (lbs)  | Estática Bruta (lbs) |          |        |
|---------------|----------------|----------|--------|-----------|----------------|--------|----------------------|----------|--------|
|               | Dianteira      | Traseira | Total  | Dianteira | Traseira       | Total  | Dianteira            | Traseira | Total  |
| Esquerda      | 1416,4         | 1048,3   | 2464,7 | 1319,4    | 1140,9         | 2460,3 | 1319,4               | 1140,9   | 2460,3 |
| Direita       | 1436,3         | 1067,0   | 2503,3 | 1396,6    | 1149,7         | 2546,3 | 1396,6               | 1149,7   | 2546,3 |
| Proporção (%) | 57,4           | 42,6     | 100,0  | 54,2      | 45,8           | 100,0  | 54,2                 | 45,8     | 100,0  |
| Total         | 2852,7         | 2115,3   | 4968,0 | 2716,0    | 2290,6         | 5006,6 | 2716,0               | 2290,6   | 5006,6 |

| Recebida (kg) |                        |                                                                                                                    | Iner                                                                                                                                                                         | cial no Ensaio                                                                                                                                                                                                                          | (kg)                                                                                                                                                                                                                                                                                              | Es                                                                                                                                                                                                                                                                                                                                                          | stática Bruta (k                                                                                                                                                                                                                                                                                                                                                                                                       | ática Bruta (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|---------------|------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Dianteira     | Traseira               | Total                                                                                                              | Dianteira                                                                                                                                                                    | Traseira                                                                                                                                                                                                                                | Total                                                                                                                                                                                                                                                                                             | Dianteira                                                                                                                                                                                                                                                                                                                                                   | Traseira                                                                                                                                                                                                                                                                                                                                                                                                               | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 642,5         | 475,5                  | 1118,0                                                                                                             | 598,5                                                                                                                                                                        | 517,5                                                                                                                                                                                                                                   | 1116,0                                                                                                                                                                                                                                                                                            | 598,5                                                                                                                                                                                                                                                                                                                                                       | 517,5                                                                                                                                                                                                                                                                                                                                                                                                                  | 1116,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 651,5         | 484,0                  | 1135,5                                                                                                             | 633,5                                                                                                                                                                        | 521,5                                                                                                                                                                                                                                   | 1155,0                                                                                                                                                                                                                                                                                            | 633,5                                                                                                                                                                                                                                                                                                                                                       | 521,5                                                                                                                                                                                                                                                                                                                                                                                                                  | 1155,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 57,4          | 42,6                   | 100,0                                                                                                              | 54,2                                                                                                                                                                         | 45,8                                                                                                                                                                                                                                    | 100,0                                                                                                                                                                                                                                                                                             | 54,2                                                                                                                                                                                                                                                                                                                                                        | 45,8                                                                                                                                                                                                                                                                                                                                                                                                                   | 100,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1294,0        | 959,5                  | 2253,5                                                                                                             | 1232,0                                                                                                                                                                       | 1039,0                                                                                                                                                                                                                                  | 2271,0                                                                                                                                                                                                                                                                                            | 1232,0                                                                                                                                                                                                                                                                                                                                                      | 1039,0                                                                                                                                                                                                                                                                                                                                                                                                                 | 2271,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|               | 642,5<br>651,5<br>57,4 | Dianteira         Traseira           642,5         475,5           651,5         484,0           57,4         42,6 | Dianteira         Traseira         Total           642,5         475,5         1118,0           651,5         484,0         1135,5           57,4         42,6         100,0 | Dianteira         Traseira         Total         Dianteira           642,5         475,5         1118,0         598,5           651,5         484,0         1135,5         633,5           57,4         42,6         100,0         54,2 | Dianteira         Traseira         Total         Dianteira         Traseira           642,5         475,5         1118,0         598,5         517,5           651,5         484,0         1135,5         633,5         521,5           57,4         42,6         100,0         54,2         45,8 | Dianteira         Traseira         Total         Dianteira         Traseira         Total           642,5         475,5         1118,0         598,5         517,5         1116,0           651,5         484,0         1135,5         633,5         521,5         1155,0           57,4         42,6         100,0         54,2         45,8         100,0 | Dianteira         Traseira         Total         Dianteira         Traseira         Total         Dianteira           642,5         475,5         1118,0         598,5         517,5         1116,0         598,5           651,5         484,0         1135,5         633,5         521,5         1155,0         633,5           57,4         42,6         100,0         54,2         45,8         100,0         54,2 | Dianteira         Traseira         Total         Dianteira         Traseira         Total         Dianteira         Traseira           642,5         475,5         1118,0         598,5         517,5         1116,0         598,5         517,5           651,5         484,0         1135,5         633,5         521,5         1155,0         633,5         521,5           57,4         42,6         100,0         54,2         45,8         100,0         54,2         45,8 |  |

Figura 1 Informações sobre o Veículo no Ensaio 3-35

#### 4.4 Sistemas de Aquisição de Dados

Toda a aquisição de dados neste ensaio do terminal foi realizada em conformidade com as exigências do MASH 2016.

#### 4.4.1 Instrumentação do veículo de ensaio

O veículo de ensaio estava equipado com 1 (um) acelerômetro triaxial e 1 (um) sensor de deslocamento angular triaxial. O conjunto de acelerômetros e sensores de deslocamento angular foi montado dentro do centro de gravidade do veículo de ensaio, de 50 mm (2,0 pol.), no plano x-y. Os acelerômetros mediram a aceleração longitudinal (x), lateral (y) e vertical (z). Os sensores de

deslocamento angular mediram o ângulo longitudinal (momento x), lateral (momento y) e vertical (momento z).

Tabela 3 Lista de Instrumentação do Veículo no Ensaio 3-35

| Ch. | Local         | Eixo                   | Ident. N° | Descrição         | MFR     | Modelo  | Unidades |
|-----|---------------|------------------------|-----------|-------------------|---------|---------|----------|
| 1   | CG do Veículo | Х                      | P51708    | Acel., Meia Ponte | Endevco | 7264-2K | g        |
| 2   | CG do Veículo | Υ                      | P51700    | Acel., Meia Ponte | Endevco | 7264-2K | g        |
| 3   | CG do Veículo | Z                      | P51696    | Acel., Meia Ponte | Endevco | 7264-2K | g        |
| 4   | CG do Veículo | Ângulo<br>Vertical     | ARS8537   | Girosc.           | DTS     | ARS-18K | Grau/s   |
| 5   | CG do Veículo | Ângulo<br>Lateral      | ARS8532   | Girosc.           | DTS     | ARS-18K | Grau/s   |
| 6   | CG do Veículo | Ângulo<br>Longitudinal | ARS8486   | Girosc.           | DTS     | ARS-18K | Grau/s   |

#### 4.4.2 Calibração

Toda a instrumentação utilizada neste ensaio foi calibrada seguindo-se padrões estabelecidos pelo NIST, sendo mantida em estado calibrado.

#### 4.4.3 Documentação Fotográfica

A documentação fotográfica desta série de ensaio compreendia, no mínimo, 2 (duas) câmeras de vídeo em tempo real a 30 quadros por segundo (fps) e 7 (sete) câmeras de vídeo digitais coloridas de alta velocidade a 1.000 fps. Todas as câmeras de alta velocidade foram ativadas por meio de interruptor sensível a pressão posicionado no artigo de ensaio para indicar o instante de contato (hora zero). Foi utilizada uma câmera digital estática para documentar o estado pré- e pós-ensaio do artigo de ensaio e do veículo de ensaio.

Tabela 4 Informações sobre a Câmera de Alta Velocidade Ensaio 3-35

| Nº da Vista | Local                     | Nº de Identificação | Fabricante | Tipo  |
|-------------|---------------------------|---------------------|------------|-------|
| 1           | Vista Geral do Motorista  | 7959                | Phantom    | V9    |
| 2           | Vista Geral do Passageiro | 6657                | Phantom    | V10   |
| 3           | Vista das Rodas           | 8187                | Phantom    | V10   |
| 4           | Vista do Artigo em Linha  | 6936                | Phantom    | V10   |
| 5           | Vista Aérea em Detalhe    | 6710                | Phantom    | V.5.1 |
| 6           | Vista Área Geral          | 6075                | Phantom    | V10   |
| 7           | Vista Oblíqua             | 8520                | Phantom    | V10   |

#### 4.4.4 Incerteza sobre as Medições

Foram avaliadas incertezas de medições referentes a valores pertinentes que afetassem os resultados deste teste. A KARCO mantém uma planilha de incertezas, disponível mediante solicitação, mas não incluso neste relatório. Em certos casos, a natureza do método de ensaio pode exigir o cálculo rigoroso e de forma estatisticamente válida da incerteza da medição. Nesses casos, a KARCO tenta identificar os componentes de incerteza para fazer uma estimativa razoável. A estimativa razoável baseia-se no conhecimento do desempenho do método e no escopo de medição, fazendo uso, por exemplo, de experiências e dados de validação prévios.

#### 5. Resultados do Teste de Colisão

#### 5.1 Teste Estático em Solo

Antes da realização do ensaio de colisão em escala real P38032-01, foi realizado um ensaio estático em solo para garantir que as condições do solo eram aceitáveis para o ensaio em questão. Os resultados do ensaio estático, de 127 mm (5.0 pol.), 254 mm (10.0 pol.) e 254 mm (10.0 pol.), mostraram-se 90% acima do nível mínimo estabelecido durante a certificação do solo. O cilindro hidráulico parou de puxar o poste a 350mm (13,8 pol) e a carga era de 38,2 kN (8.581,2 lbs), que é

3.764,7 lbs superior ao requisito mínimo neste ponto. Com base no fato de que havia apenas 1,2 pol. à esquerda do deslocamento e solo significativamente mais forte, aproximadamente um aumento de 50% em resistência em relação ao requisito, o solo foi considerado aceitável para o teste. O valor de linha de base a 351 mm (13,8 pol) do valor de deslocamento é 21,4 kN (4816,5 lbs), é possível atribuir a resistência adicionada à quantidade estendida de tempo que a instalação estava no solo. A KARCO considerou o solo aceitável para teste com base na suposição de que o solo era aceitável de 0 a 351mm (13,8 pol) e o restante 30mm (1,2 pol) de deflexão também deve ser aceitável se o cilindro hidráulico tinha capacidade adicionada. Os resultados do ensaio estático podem ser encontrados no Apêndice C do presente relatório de ensaio.

#### 5.2 Condições meteorológicas

O teste nº P38032-01 foi realizado em 12 de março de 2018, a aproximadamente 10h39m.

Tabela 5 Condições Meteorológicas no Teste 3-35

| Temperatura           | 67 °F |
|-----------------------|-------|
| Umidade               | 45%   |
| Velocidade dos Ventos | 0 mph |
| Direção dos Ventos    | N/A   |

Somente para fins informativos

#### 5.3 Teste 3-35 do MASH 2016

Conforme recomendado no manual MASH 2016, realizou-se um teste de impacto em escala real para avaliar o desempenho em impactos do terminal SGET, da Spig Industries LLC, seguindo-se o padrão de Teste 3-35 do MASH, aos 12 de março de 2018. O artigo de teste foi posicionado a um ângulo de 25°, com o veículo atingindo o sistema no poste 3. O teste foi realizado com o uso de uma caminhonete RAM 1500 2012 4 portas, disponível no mercado, com massa inercial no teste de 2.271,0 kg (5,006. 6 lbs).

#### 5.4 Descrição do Teste

O veículo de prova colidiu com o sistema a uma velocidade de 95,97 km/h (59,63 mph) e a um ângulo de impacto de 25,2°. O veículo foi configurado de forma a colidir com o sistema no centro do poste 3, sendo que o primeiro ponto de contato real com o sistema foi a 76 mm (3,0 pol.) na direção do fim da proteção a partir do centro do poste 3.

Na ocasião do impacto, o para-choque dianteiro começou a deformar e o sistema começou a defletir para o lado do campo. O pneu dianteiro do veículo atingiu o poste 4 a 0,085s e fez com que o poste saísse da defensa metálica. A deflexão da defensa fez com que o poste 5 saísse da defensa a 0,114s e o veículo atingiu o poste 5 a aproximadamente 0,150s. O poste 6 começou a torcer e girar para o lado do campo e saiu da defensa a 0,130s. A parte traseiro do veículo atingiu a defensa aproximadamente no local do poste 3 a 0,235s. O veículo estava paralelo à instalação a 0,290s e começou a redirecionar. O veículo saiu do sistema a 0,700s a um ângulo de 6,7°. O conjunto de roda dianteira do lado do passageiro foi danificado e fez com que o veículos voltasse na direção da instalação após ter saído. O veículo atingiu a instalação uma segunda vez aproximadamente no poste 17. O veículo entrou em repouso a 28,1 m (92,2 pés) de distância a 0,5 m (1,7 pés) à direita de seu ponto inicial de contato com o sistema, medido a partir do centro de gravidade do veículo.

#### 5.5 Danos ao Artigo de Teste

O sistema foi danificado do poste 1 até o poste 8, e os primeiros 4 (quatro) painéis da defensa com perfil do tipo W foram danificados. Os parafusos sextavados da montagem do cabeçote de impacto ao poste 1 estavam rompidos a partir do poste. Não havia dano visível ao conjunto de ancoragem do cabo. Os postes 1 a 3 deslocaram-se no solo e o poste 2 e 3 permaneceram fixados na defensa. Os postes 4 a 8 curvaram-se na linha do solo e saíram da defensa. A extremidade da instalação também foi danificada a partir do segundo impacto com o veículo de ensaio. Os postes 15 a 17 se inclinaram no solo e houve uma curvatura leve nas defensas 8 e 9.

#### 5.6 Danos ao Veículo de Prova

Os danos ao veículo concentraram-se em seu lado dianteiro direito. O conjunto de subestrutura por trás do para-lama ficou deformado. O braço de controle inferior foi entortado e o pneu foi perfurado. O lado do para-choque dianteiro foi deformado para dentro e foi alojado atrás da roda dianteira. O para-lama dianteiro, ambas as portas e a caçamba foram danificados. O farol dianteiro ficou soltou e a grade foi danificada. Não houve penetração do compartimento dos ocupantes, não sendo ultrapassados os limites de deformação.

Tabela 6 Deformação Máxima do Compartimento de Ocupantes por Local

| Local                                            | Deformação Máxima | Deformação Permitida no MASH |
|--------------------------------------------------|-------------------|------------------------------|
| Teto                                             | 0,0 pol.          | 102 mm (4.0 pol.)            |
| Para-brisa                                       | 0,0 pol.          | 76 mm (3.0 pol.)             |
| Janela                                           | 0,0 pol.          | 0,0 pol.                     |
| Roda / descanso de pé                            | 5 mm (0.2 pol.)   | 229 mm (9.0 pol.)            |
| Painel frontal lateral (em frente ao pilar A     | 0,0 pol.          | 305 mm (12.0 pol.)           |
| Área da porta lateral dianteira (acima do banco) | 0,0 pol.          | 229 mm (9.0 pol.)            |
| Área da porta lateral dianteira (abaixo do banco | 0,0 pol.          | 305 mm (12.0 pol.)           |
| Chapa de apoio do assoalho e túnel de            | 8 mm (0.3 pol.)   | 305 mm (12.0 pol.)           |
| transmissão                                      |                   |                              |

#### 5.7 Adequação Estrutural

O artigo de teste deve conter e redirecionar o veículo ou fazer com que o veículo pare de forma controlada, o veículo não deve adentrar por baixo, nem passar por cima da instalação, ainda que seja aceitável a deflexão controlada do artigo de teste. O artigo de teste redirecionou o veículo de forma controlada.

#### 5.8 Risco aos Ocupantes

Quanto ao risco aos ocupantes, os artigos de teste são avaliados por 4 (quatro) critérios. O primeiro critério avalia o possível perigo de os elementos, fragmentos ou outros resíduos soltos do artigo de ensaio penetrarem o compartimento de ocupantes do veículo de ensaio ou presentar perigo indevido a outros elementos do tráfego, pedestres ou trabalhadores em zona de trabalho. O segundo critério é o veículo permanecer na posição normal. O terceiro critério é o ângulo de deslocamento longitudinal do veículo não ultrapassar 75° em todo o teste. O último critério baseia-se nos cálculos das Velocidades de Impacto aos Ocupantes (OIV) e desacelerações dos ocupantes. O limite máximo permitido do Limite de Impacto aos Ocupantes, tanto em sentido longitudinal quanto lateral, é de 12,2 m/s (40,0 pés/s). A desaceleração máxima permitida tanto em sentido longitudinal quanto lateral é de 29,49 g. Ambos os critérios são calculados a partir dos dados de aceleração coletados durante o teste.

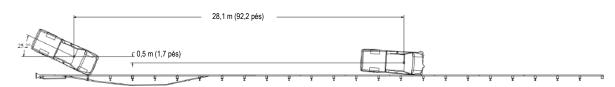
A extensão máxima do campo de fragmentos foi de 45,7 m (149,9 pés) em direção ao ponto final e de 21,7 m (71,1 pés) do lado do tráfego, medida a partir do primeiro ponto de contato com o sistema. Os fragmentos consistiam de blocos de de separação quebrados e pecas do veículo.

Tabela 7 Resumo dos Fatores de Risco aos Ocupantes

| l abeia / Resumo dos Patores de Risco aos Ocupantes |      |          |      |            |      |            |  |
|-----------------------------------------------------|------|----------|------|------------|------|------------|--|
| Parâmetro de Teste                                  | Eixo | Unidades | Máx. | Tempo (ms) | Mín. | Tempo (ms) |  |
| Velocidade de Impacto do Veículo                    | Х    | pés/s    | 87,9 |            |      |            |  |
| Velocidade de Impacto aos Ocupantes                 | Х    | pés/s    | 14,1 | 157,2      |      |            |  |
| Velocidade de Impacto aos Ocupantes                 | Υ    | pés/s    | 13,8 | 157,2      |      |            |  |
| Desaceleração                                       | Х    | g        | 1,4  | 547,4      | -5,8 | 384,9      |  |
| Desaceleração                                       | Y    | g        | 1,9  | 602,5      | -7,8 | 234,8      |  |
| THIV                                                |      | pés/s    | 21,3 | 166,9      |      |            |  |
| PHD                                                 |      | g        | 8,3  | 235,0      |      |            |  |
| ASI                                                 |      |          | 0,62 | 265,0      |      |            |  |
| Ângulo Longitudinal                                 | Х    | grau     | 1,8  | 177,8      | -3,1 | 999,9      |  |
| Ângulo Lateral                                      | Y    | grau     | 0,9  | 115,6      | -3,5 | 672,7      |  |
| Ângulo Vertical                                     | Z    | grau     | 34,4 | 681,7      | 0,0  | 1,9        |  |

O terminal SGET da SPIG Industries, LLC atendeu a todas as exigências do Teste 3-35 previsto no manual MASH 2016. O sistema conteve e redirecionou o veículo. Não foi ultrapassado nenhum dos limites de intrusão, não houve penetração no compartimento de ocupantes e todos os fatores de risco aos ocupantes ficaram dentro dos limites permitidos. O desempenho do terminal SGET durante o teste 3-35 do MASH 2016 foi considerado aceitável.

Tabela 8 Resumo dos Critérios de Avaliação


| Fator de<br>Avaliação   |   | Critérios de Avaliação                                                                                                                                                                                                                                                                |                           |                     |          |  |  |  |
|-------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------|----------|--|--|--|
| Adequação<br>Estrutural | Α | O artigo de teste deve conter e redirecionar o veículo ou fazer com que o veículo pare de forma controlada, o veículo não deve adentrar por baixo, nem passar por cima da instalação, ainda que seja aceitável a deflexão controlada do artigo de teste.                              |                           |                     |          |  |  |  |
|                         | D | Os elementos, fragmentos ou outros resíduos soltantes do artigo de ensaio não podem penetrar<br>D ou apresentar potencial de penetração no compartimento de ocupantes ou apresentar perigo<br>indevido a outros elementos do tráfego, pedestres ou trabalhadores em zona de trabalho. |                           |                     |          |  |  |  |
| Diagram and             | F | F O veículo deve continuar na posição normal, durante e após a colisão. Os ângulos longitudinal e lateral máximos não devem ultrapassar os 75°.                                                                                                                                       |                           |                     |          |  |  |  |
| Risco aos               |   | As velocidades de impacto aos ocupantes (OIV) devem atender aos seguintes limites:                                                                                                                                                                                                    |                           |                     |          |  |  |  |
| Ocupantes               | Н | Componente                                                                                                                                                                                                                                                                            | Preferencial              | Máximo              | APROVADO |  |  |  |
|                         |   | Longitudinal e Lateral                                                                                                                                                                                                                                                                | 9,1 m/s (30 pés/s)        | 12,2 m/s (40 pés/s) |          |  |  |  |
|                         |   | A desaceleração dos ocupar                                                                                                                                                                                                                                                            | ntes deve atender aos seg | guintes limites:    |          |  |  |  |
|                         | ı | Componente                                                                                                                                                                                                                                                                            | Preferencial              | Máximo              | APROVADO |  |  |  |
|                         |   | Longitudinal e Lateral                                                                                                                                                                                                                                                                | 15,0 g                    | 20,49 g             |          |  |  |  |
| Trajeto do<br>Veículo   | N |                                                                                                                                                                                                                                                                                       |                           |                     |          |  |  |  |

### **AVALIAÇÃO GERAL DO TESTE**

APROVADO

### Resumo do Teste 3-35 MASH 2016





| <u>INFORMAÇÕES GERAIS</u> |                                    |
|---------------------------|------------------------------------|
| Empresa de Testes         | KARCO Engineering, LLC.            |
| Teste KARCO nº            | P38032-01                          |
| Designação do Ensaio      | 3-35                               |
| Data do Teste             | 12/03/2018                         |
| ARTIGO DE TESTE           |                                    |
| Nome / Modelo             | SGET                               |
| Tipo                      | Terminal de Absorção de Impacto    |
| Comprimento de Instalação | 47,6 m (156,3 pés)                 |
| Comprimento do Terminal   | 15,2 m (50,2 pés)                  |
| Superfície do Percurso    | Solo com Partículas Médias a Finas |
| <u>VEÍCULO DE ENSAIO</u>  |                                    |
| Tipo / Designação         | 2270P                              |
| Ano, Marca e Modelo       | 2012 RAM 1500                      |
|                           |                                    |

| Massa Padrão             | 2.253,5 kg (4.968,0 lbs) |
|--------------------------|--------------------------|
| Massa Inercial de Ensaio | 2.271,0 kg (5.006,6 lbs) |
| Massa Estática Bruta     | 2.271,0 kg (5.006,6 lbs) |

| Condições de Impacto                  |                                                 |
|---------------------------------------|-------------------------------------------------|
| Velocidade de Impacto                 | 95,97 km/h (59,63 mph)                          |
| Ângulo de Impacto                     | 25.2°                                           |
|                                       | -,                                              |
| Local / Orientação                    | Poste 3                                         |
| Gravidade do Impacto                  | 146,3 kJ (107,9 kip-ft)                         |
| Condições de Saída                    |                                                 |
| Velocidade de Saída                   | 40,39 km/h (25,10 mph)                          |
|                                       |                                                 |
| Ângulo de Saída                       | 6,7°                                            |
| Posição Final do Veículo              | 28,1 m (92,2 pés) em direção ao fim da proteção |
|                                       | 0,5 m (1,7 pés) à direita                       |
| Critérios cumpridos da Caixa de Saída | Sim                                             |
| Bloqueio de Trajeto do Veículo        | Nenhuma                                         |
| Penetração do Veículo na Defensa      | Nenhuma                                         |
| Estabilidade do Veículo               | Satisfatória                                    |
| Ângulo Longitudinal Máximo            | -3,1 °                                          |
| Ângulo Lateral Máximo                 | -3,5 °                                          |
| Ângulo Vertical Máximo                | 34,4 °                                          |

| Risco aos Ocupantes          |                                                  |
|------------------------------|--------------------------------------------------|
| OIV Longitudinal             | 4,3 m/s (14,1 pés/s)                             |
| OIV Lateral                  | 4,2 m/s (13,8 pés/s)                             |
| RA Longitudinal              | -5,8 g                                           |
| RA Lateral                   | -7,8 g                                           |
| THIV                         | 6,5 m/s (21,3 pés/s)                             |
| PHD                          | 8,3 g                                            |
| ASI                          | 0,62                                             |
| Deflexões do Artigo de Teste |                                                  |
| Estática                     | 0,8 m (2,7 pés)                                  |
| Dinâmica                     | 1,2 m (4,0 pés)                                  |
| Largura de trabalho          | 1,2 m (4,0 pés)                                  |
| Campo de Fragmentos          | 45,7 m (149,9 pés) em direção ao fim da proteção |
|                              | 21,7 m (71,1 pés) à direita                      |
| Danos ao Veículo             |                                                  |
| Escala de Danos ao Veículo   | 01-RFQ-2                                         |
| CDC                          | 01RFEW1                                          |
| Intrusão Máxima              | 8 mm (0.3 pol.)                                  |

Figura 2 Resumo do Teste 3-35

## Apêndice A

### Fotografias

| Figura |                                | Página |
|--------|--------------------------------|--------|
| 1      | Configuração do Teste          | A-1    |
| 2      | Configuração do Teste, Detalhe | A-1    |
| 3      | Configuração do Teste          | A-2    |
| 4      | Configuração do Teste, Detalhe | A-2    |
| 5      | Configuração do Teste          | A-3    |
| 6      | Configuração do Teste, Detalhe | A-3    |
| 7      | Configuração do Teste          | A-4    |
| 8      | Configuração do Teste, Detalhe | A-4    |
| 9      | Configuração do Teste          | A-5    |
| 10     | Configuração do Teste, Detalhe | A-5    |
| 11     | Pré-Teste                      | A-6    |
| 12     | Pós-Teste                      | A-6    |

|    | Livro CXXXVIII                                               | I-24.360/20 | 207  |
|----|--------------------------------------------------------------|-------------|------|
| 13 | Pós-Teste                                                    |             | A-7  |
| 14 | Pós-Teste                                                    |             | A-7  |
| 15 | Pré-Teste - Vista Frontal do Artigo de Teste                 |             | A-8  |
| 16 | Pós-Teste - Vista Frontal do Artigo de Teste                 |             | A-8  |
| 17 | Pré-Teste - Vista Direita Frontal de ¾ do Artigo de Teste    |             | A-9  |
| 18 | Pós-Teste - Vista Direita Frontal de ¾ do Artigo de Teste    |             | A-9  |
| 19 | Pré-Teste - Vista Direita Frontal do Artigo de Teste         |             | A-10 |
| 20 | Pós-Teste - Vista Direita Frontal do Artigo de Teste         |             | A-10 |
| 21 | Pré-Teste - Vista Direita Traseira de ¾ do Artigo de Teste   |             | A-11 |
| 22 | Pós-Teste - Vista Direita Traseira de ¾ do Artigo de Teste   |             | A-11 |
| 23 | Pré-Teste - Vista Direita Traseira do Artigo de Teste        |             | A-12 |
| 24 | Pós-Teste - Vista Direita Traseira do Artigo de Teste        |             | A-12 |
| 25 | Pré-Teste - Vista Esquerda Traseira de ¾ do Artigo de Teste  |             | A-13 |
| 26 | Pós-Teste - Vista Esquerda Traseira de ¾ do Artigo de Teste  |             | A-13 |
| 27 | Pré-Teste - Vista Esquerda do Artigo de Teste                |             | A-14 |
| 28 | Pós-Teste - Vista Esquerda do Artigo de Teste                |             | A-14 |
| 29 | Pré-Teste - Vista Esquerda Frontal de ¾ do Artigo de Teste   |             | A-15 |
| 30 | Pós-Teste - Vista Esquerda Frontal de ¾ do Artigo de Teste   |             | A-15 |
| 31 | Danos ao Artigo de Teste                                     |             | A-16 |
| 32 | Danos ao Artigo de Teste                                     |             | A-16 |
| 33 | Danos ao Artigo de Teste                                     |             | A-17 |
| 34 | Danos ao Artigo de Teste                                     |             | A-17 |
| 35 | Danos ao Artigo de Teste                                     |             | A-18 |
| 36 | Danos ao Artigo de Teste                                     |             | A-18 |
| 37 | Pré-Teste - Vista Esquerda do Veículo de Prova               |             | A-19 |
| 38 | Pós-Teste - Vista Esquerda do Veículo de Prova               |             | A-19 |
| 39 | Pré-Teste - Vista Esquerda Frontal de ¾ do Veículo de Prova  |             | A-20 |
| 40 | Pós-Teste - Vista Esquerda Frontal de ¾ do Veículo de Prova  |             | A-20 |
| 41 | Pré-Teste - Vista Frontal do Veículo de Prova                |             | A-21 |
| 42 | Pós-Teste - Vista Frontal do Veículo de Prova                |             | A-21 |
| 43 | Pré-Teste - Vista Direita Frontal de ¾ do Veículo de Prova   |             | A-22 |
| 44 | Pós-Teste - Vista Direita Frontal de ¾ do Veículo de Prova   |             | A-22 |
| 45 | Pré-Teste - Vista Direita do Veículo de Prova                |             | A-23 |
| 46 | Pós-Teste - Vista Direita do Veículo de Prova                |             | A-23 |
| 47 | Pré-Teste - Vista do Para-Brisa                              |             | A-24 |
| 48 | Pós-Teste - Vista do Para-Brisa                              |             | A-24 |
| 49 | Pré-Teste - Compartimento de Ocupantes no Lado do Condutor   |             | A-25 |
| 50 | Pós-Teste - Compartimento de Ocupantes no Lado do Condutor   |             | A-25 |
| 51 | Pré-Teste - Chapa de Assoalho no Lado do Condutor            |             | A-26 |
| 52 | Pós-Teste - Chapa de Assoalho no Lado do Condutor            |             | A-26 |
| 53 | Pré-Teste - Compartimento de Ocupantes no Lado do Passageiro |             | A-27 |
| 54 | Pós-Teste - Compartimento de Ocupantes no Lado do Passageiro |             | A-27 |
| 55 | Pré-Teste - Chapa de Assoalho no Lado do Passageiro          |             | A-28 |
| 56 | Pós-Teste - Chapa de Assoalho no Lado do Passageiro          |             | A-28 |
| 57 | Plaqueta do Fabricante do Veículo de Prova                   |             | A-29 |

FIGURA 1. Configuração do Teste



FIGURA 2. Configuração do Teste, Detalhe



FIGURA 3. Configuração do Teste



FIGURA 4. Configuração do Teste, Detalhe



FIGURA 5. Configuração do Teste



FIGURA 6. Configuração do Teste, Detalhe



FIGURA 7. Configuração do Teste



FIGURA 8. Configuração do Teste, Detalhe

FIGURA 9. Configuração do Teste



FIGURA 10. Configuração do Teste, Detalhe



FIGURA 11. Pré-Teste



FIGURA 12. Pós-Teste



FIGURA 13. Pós-Teste





FIGURA 15. Pré-Teste - Vista Frontal do Artigo de Teste



FIGURA 16. Pós-Teste - Vista Frontal do Artigo de Teste



FIGURA 17. Pré-Teste - Vista Direita Frontal de ¾ do Artigo de Teste



FIGURA 18. Pós-Teste - Vista Direita Frontal de ¾ do Artigo de Teste



FIGURA 19. Pré-Teste - Vista Direita do Artigo de Teste



FIGURA 20. Pós-Teste - Vista Direita Frontal do Artigo de Teste



FIGURA 21. Pré-Teste - Vista Direita Traseira de ¾ do Artigo de Teste



FIGURA 22. Pós-Teste - Vista Direita Traseira de ¾ do Artigo de Teste



FIGURA 23. Pré-Teste - Vista Traseira do Artigo de Teste



FIGURA 24. Pós-Teste - Vista Traseira do Artigo de Teste



FIGURA 25. Pré-Teste - Vista Esquerda Traseira de ¾ do Artigo de Teste



FIGURA 26. Pós-Teste - Vista Esquerda Traseira de ¾ do Artigo de Teste



FIGURA 27. Pré-Teste - Vista Esquerda do Artigo de Teste



FIGURA 28. Pós-Teste - Vista Esquerda do Artigo de Teste



FIGURA 29. Pré-Teste - Vista Esquerda Frontal de ¾ do Artigo de Teste



FIGURA 30. Pós-Teste - Vista Esquerda Frontal de ¾ do Artigo de Teste



FIGURA 31. Danos ao Artigo de Teste



FIGURA 32. Danos ao Artigo de Teste

FIGURA 33. Danos ao Artigo de Teste



FIGURA 34. Danos ao Artigo de Teste



FIGURA 35. Danos ao Artigo de Teste



FIGURA 36. Danos ao Artigo de Teste



FIGURA 37. Pré-Teste - Vista Esquerda do Veículo de Prova



FIGURA 38. Pós-Teste - Vista Esquerda do Veículo de Prova



FIGURA 39. Pré-Teste - Vista Esquerda Frontal de 3/4 do Veículo de Prova



FIGURA 40. Pós-Teste - Vista Esquerda Frontal de ¾ do Veículo de Prova

FIGURA 41. Pré-Teste - Vista Frontal do Veículo de Prova



FIGURA 42. Pós-Teste - Vista Frontal do Veículo de Prova



FIGURA 43. Pré-Teste - Vista Direita Frontal de ¾ do Veículo de Prova



FIGURA 44. Pós-Teste - Vista Direita Frontal de ¾ do Veículo de Prova



FIGURA 45. Pré-Teste - Vista Direita do Veículo de Prova



FIGURA 46. Pós-Teste - Vista Direita do Veículo de Prova



FIGURA 47. Pré-Teste - Para-Brisa



FIGURA 48. Pós-Teste - Para-Brisa

FIGURA 49. Pré-Teste - Compartimento de Ocupantes no Lado do Condutor



FIGURA 50. Pós-Teste - Compartimento de Ocupantes no Lado do Condutor



FIGURA 51. Pré-Teste - Chapa de Assoalho no Lado do Condutor



FIGURA 52. Pós-Teste - Chapa de Assoalho no Lado do Condutor



FIGURA 53. Pré-Teste - Compartimento de Ocupantes no Lado do Passageiro



FIGURA 54. Pós-Teste - Compartimento de Ocupantes no Lado do Passageiro

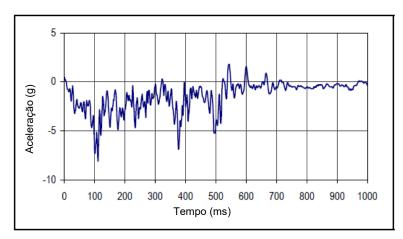


FIGURA 55. Pré-Teste - Chapa de Assoalho no Lado do Passageiro

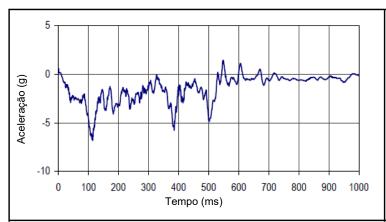


FIGURA 56. Pós-Teste - Chapa de Assoalho no Lado do Passageiro

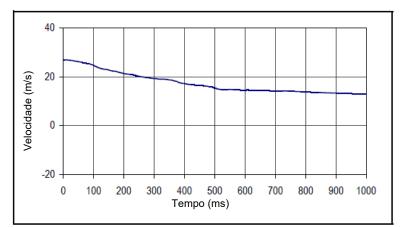



FIGURA 57. Plaqueta do Fabricante do Veículo de Prova

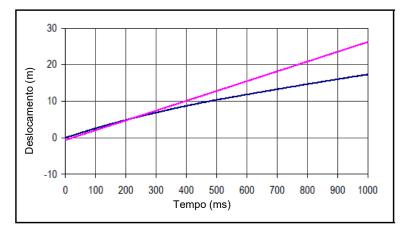
### Apêndice B


### Plotagens de Dados

### LISTA DE PLOTAGENS DE DADOS

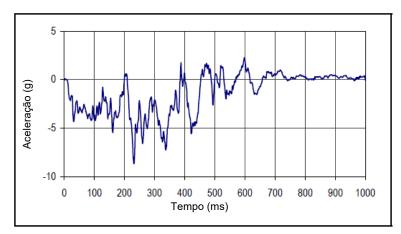

| Plotagem  |                                                         |                                          |                | Página     |
|-----------|---------------------------------------------------------|------------------------------------------|----------------|------------|
| 1         | CG X do veículo de teste                                |                                          |                | B-1        |
| 2         | Movimentação Média do                                   | CG X do veículo de teste                 |                | B-1        |
| 3         | Velocidade do CG X do v                                 | veículo de teste                         |                | B-1        |
| 4         | Deslocamento do CG X o                                  | do veículo de teste                      |                | B-1        |
| 5         | CG Y do veículo de teste                                |                                          |                | B-2        |
| 6         | Movimentação Média do                                   | CG Y do veículo de teste                 |                | B-2        |
| 7         | Velocidade do CG Y do v                                 | veículo de teste                         |                | B-2        |
| 8         | Deslocamento do CG Y do veículo de teste                |                                          |                |            |
| 9         | CG Z do veículo de teste                                |                                          |                | B-3        |
| 10        | 10 Índice de Gravidade de Acidentes do Veículo de Prova |                                          |                | B-3        |
| 11        | Ângulo de Inclinação Lon                                | ngitudinal do veículo de teste           |                | B-4        |
| 12        | Ângulo de Inclinação Ver                                | tical do Veículo de Prova                |                | B-4        |
| 13        | Ângulo de Inclinação Late                               | eral do Veículo de Ensaio                |                | B-4        |
| Artigo de | Teste: Teri                                             | minal de Entrada SGET da SPIG Industries | Projeto nº:    | P38032-01  |
| Programa  | do Teste:                                               | MASH 3-35                                | Data do Teste: | 12/03/2018 |



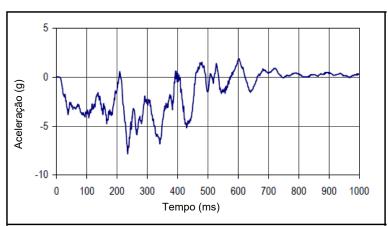

| Descrição da Curva |             |                  |          |
|--------------------|-------------|------------------|----------|
| CG X do veícul     | lo de teste |                  |          |
| Plotage            | em nº       | Categoria<br>SAE | Unidades |
| 00                 | 1           | 60               | g        |
| Máx.               | Tempo       | Mín.             | Tempo    |
| 1,8                | 543,4       | -8,1             | 110,8    |
|                    |             |                  |          |



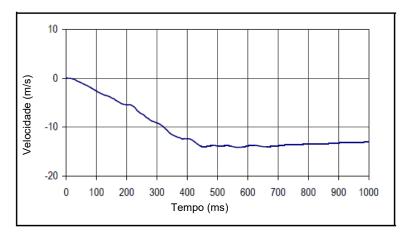
| Descrição da Curva                             |                                    |      |       |
|------------------------------------------------|------------------------------------|------|-------|
| Movimentação Média do CG X do veículo de teste |                                    |      |       |
| Plotage                                        | Plotagem n° Categoria SAE Unidades |      |       |
| 002                                            |                                    | 180  | g     |
| Máx.                                           | Tempo                              | Mín. | Tempo |
| 1,4                                            | 547,4                              | -6,8 | 114,2 |



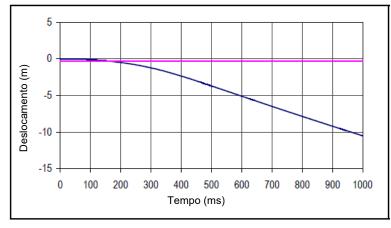

| Descrição da Curva                     |                                    |      |       |
|----------------------------------------|------------------------------------|------|-------|
| Velocidade do CG X do veículo de teste |                                    |      |       |
| Plotage                                | Plotagem n° Categoria SAE Unidades |      |       |
| 003                                    |                                    | 180  | m/s   |
| Máx.                                   | Tempo                              | Mín. | Tempo |
| 26,9                                   | 7,3                                | 13,0 | 999,9 |




| Descrição da Curva |                                          |      |       |  |  |
|--------------------|------------------------------------------|------|-------|--|--|
| Deslocamento (     | Deslocamento do CG X do veículo de teste |      |       |  |  |
| Plotage            | Plotagem n° Categoria SAE Unidades       |      |       |  |  |
| 004                |                                          | 180  | m     |  |  |
| Máx.               | Tempo                                    | Mín. | Tempo |  |  |
| 17,4               | 999,9                                    | 0,0  | 0,0   |  |  |


Deslocamento do CG X do Veículo
 Deslocamento X de Ocupantes

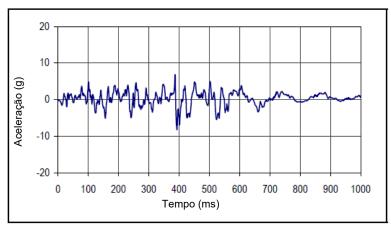



| Descrição da Curva |                                    |      |       |  |
|--------------------|------------------------------------|------|-------|--|
| CG Y do veículo    | CG Y do veículo de teste           |      |       |  |
| Plotage            | Plotagem nº Categoria SAE Unidades |      |       |  |
| 005                |                                    | 60   | g     |  |
| Máx.               | Tempo                              | Mín. | Tempo |  |
| 2,3                | 598,1                              | -8,7 | 231,5 |  |

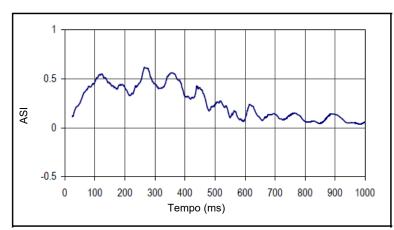


| Descrição da Curva                 |                                                |      |       |  |
|------------------------------------|------------------------------------------------|------|-------|--|
| Movimentação                       | Movimentação Média do CG Y do veículo de teste |      |       |  |
| Plotagem nº Categoria SAE Unidades |                                                |      |       |  |
| 006                                |                                                | 180  | g     |  |
| Máx.                               | Tempo                                          | Mín. | Tempo |  |
| 1,9                                | 602,5                                          | -7,8 | 234,8 |  |

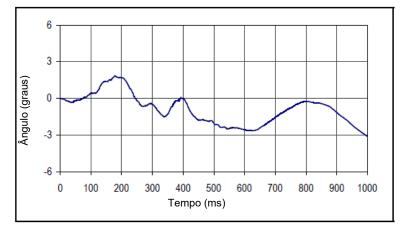



| Descrição da Curva |                                        |       |       |  |
|--------------------|----------------------------------------|-------|-------|--|
| Velocidade do (    | Velocidade do CG Y do veículo de teste |       |       |  |
| Plotage            | Plotagem nº Categoria SAE Unidades     |       |       |  |
| 007                | 7                                      | 180   | m/s   |  |
| Máx.               | Tempo                                  | Mín.  | Tempo |  |
| 0,0                | 6,5                                    | -14,2 | 569,6 |  |

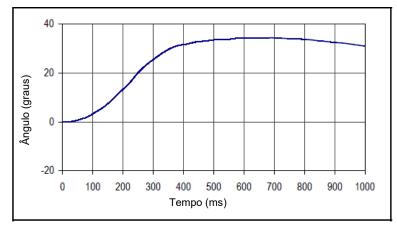



| Descrição da Curva |                                          |       |       |  |
|--------------------|------------------------------------------|-------|-------|--|
|                    | Deslocamento do CG Y do veículo de teste |       |       |  |
| Plotage            | Plotagem nº Categoria SAE Unidades       |       |       |  |
| 300                | 008                                      |       | m     |  |
| Máx.               | Tempo                                    | Mín.  | Tempo |  |
| 0,0                | 9,5                                      | -10,5 | 999,9 |  |

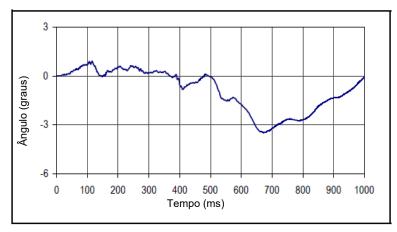
Deslocamento do CG X do Veículo


Deslocamento X de Ocupantes




| Descrição da Curva |          |               |          |
|--------------------|----------|---------------|----------|
| CG Z do veículo    | de teste |               |          |
| Plotage            | m nº     | Categoria SAE | Unidades |
| 009                | 009      |               | g        |
| Máx.               | Tempo    | Mín.          | Tempo    |
| 6,8 386,5          |          | -8,3          | 392,6    |
|                    |          |               |          |




| Des | Descrição da Curva       |       |               |          |
|-----|--------------------------|-------|---------------|----------|
| CG. | CG Z do veículo de teste |       |               |          |
|     | Plotage                  | m n°  | Categoria SAE | Unidades |
|     | 010                      |       | 180           | ASI      |
|     | Máx.                     | Tempo | Mín.          | Tempo    |
|     | 0,6                      | 265,0 | 0,0           | 981,5    |



| Descrição da Curva |                                                       |      |       |  |
|--------------------|-------------------------------------------------------|------|-------|--|
| Ângulo de Inclir   | Ângulo de Inclinação Longitudinal do veículo de teste |      |       |  |
| Plotage            | Plotagem n° Categoria SAE Unidades                    |      |       |  |
| 011                | 011                                                   |      | grau  |  |
| Máx.               | Tempo                                                 | Mín. | Tempo |  |
| 1,8 177,8          |                                                       | -3,1 | 999,9 |  |

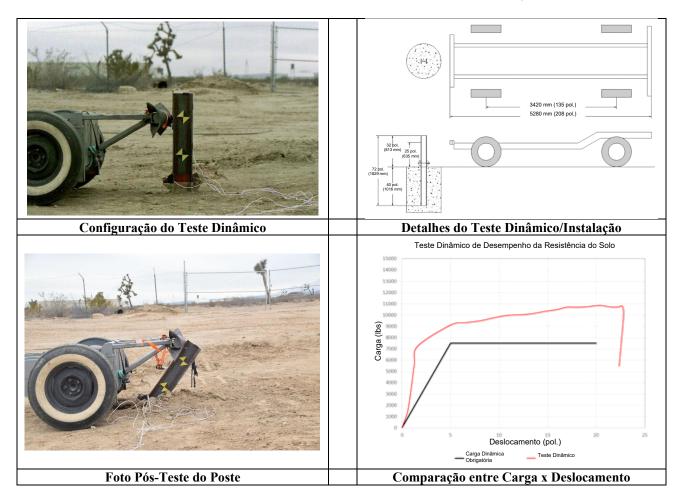


| Descrição da Curva                |                                                   |      |          |  |
|-----------------------------------|---------------------------------------------------|------|----------|--|
| Ângulo de Inclir                  | Ângulo de Inclinação Vertical do Veículo de Prova |      |          |  |
| Plotagem n° Categoria SAE Unidade |                                                   |      | Unidades |  |
| 012                               |                                                   | 180  | grau     |  |
| Máx.                              | Tempo                                             | Mín. | Tempo    |  |
| 34,4                              | 681,7                                             | 0,0  | 1,9      |  |



| Descrição da Curva |                                                   |      |       |  |
|--------------------|---------------------------------------------------|------|-------|--|
| Ângulo de Inclir   | Ângulo de Inclinação Lateral do Veículo de Ensaio |      |       |  |
| Plotage            | Plotagem n° Categoria SAE Unidade                 |      |       |  |
| 013                |                                                   | 180  | grau  |  |
| Máx.               | Tempo                                             | Mín. | Tempo |  |
| 0,9 115,6          |                                                   | -3,5 | 672,7 |  |

### **Apêndice** C


### Informação sobre a Resistência do Solo

### LISTA DE FIGURAS

| Plotagem |                                        | Página |
|----------|----------------------------------------|--------|
| 1        | Dados Dinâmicos da Resistência do Solo | C-1    |
| 2        | Dados Estáticos da Resistência do Solo | C-2    |
| 3        | Análise de Peneiramento                | C-3    |
|          | DADOS DINÂMICOS DA RESISTÊNCIA DO SOLO |        |

| Artigo de Teste:   | Terminal de Entrada SGET da SPIG Industries | Projeto nº:    | P38032-01  |
|--------------------|---------------------------------------------|----------------|------------|
| Programa do Teste: | MASH 3-35                                   | Data do Teste: | 12/03/2018 |

### DADOS DINÂMICOS DA RESISTÊNCIA DO SOLO



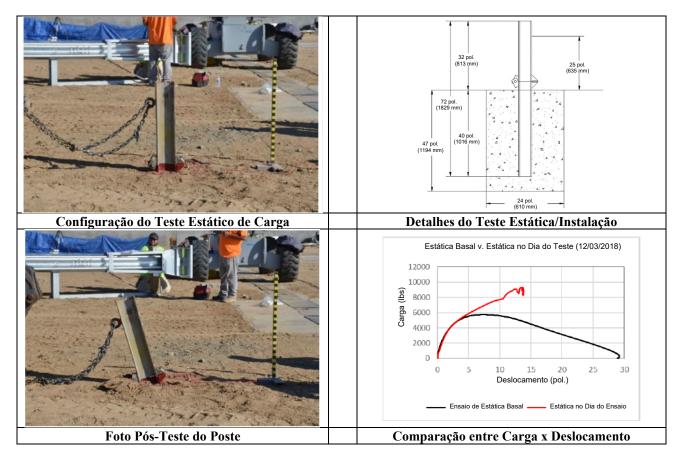

| Data de Certificação                     | 06/02/2017                                                      |
|------------------------------------------|-----------------------------------------------------------------|
| Instalação de Testes e Localização       | KARCO, Pista 4                                                  |
| Descrição do Solo no Local (ASTM D 2487) | Areia siltosa com partículas médias a finas                     |
| Descrição do Procedimento de Aterro      | Elevações de 203 mm (8,0 pol.) compactadas com pilão pneumático |
| Peso do Veículo Usado                    | 927,5 kg (2.044,8 lbs)                                          |
| Velocidade de Impacto                    | 33,38 km/h (20,74 mph)                                          |

Figura 1: Dados Dinâmicos da Resistência do Solo

### DADOS ESTÁTICOS DA RESISTÊNCIA DO SOLO

| Artigo de Teste:   | Terminal de Entrada SGET da SPIG Industries | Projeto nº:    | P38032-01  |
|--------------------|---------------------------------------------|----------------|------------|
| Programa do Teste: | MASH 3-35                                   | Data do Teste: | 12/03/2018 |

### DADOS DO TESTE DE VERIFICAÇÃO ESTÁTICA DO SOLO



| Data                                     | 12/03/2018                                                      |
|------------------------------------------|-----------------------------------------------------------------|
| Instalação de Testes e Localização       | KARCO, Pista 4                                                  |
| Descrição do Solo no Local (ASTM D 2487) | Areia siltosa com partículas médias a finas                     |
| Descrição do Procedimento de Aterro      | Elevações de 203 mm (8,0 pol.) compactadas com pilão pneumático |

Figura 2: Dados Estáticos da Resistência do Solo

### ANÁLISE DE PENEIRAMENTO

| Artigo de Teste:   | Terminal de Entrada SGET da SPIG Industries | Projeto nº:    | P38032-01  |
|--------------------|---------------------------------------------|----------------|------------|
| Programa do Teste: | MASH 3-35                                   | Data do Teste: | 12/03/2018 |

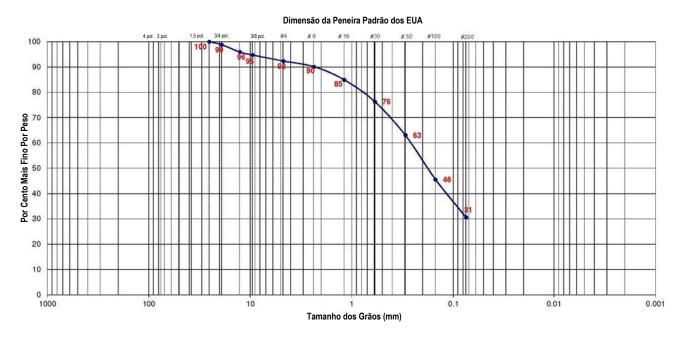
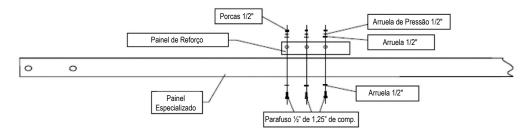



Figura 3: Análise de Peneiramento

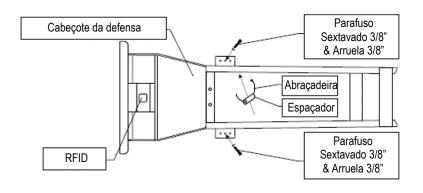
### Apêndice D

#### **Documentos do Fabricante**

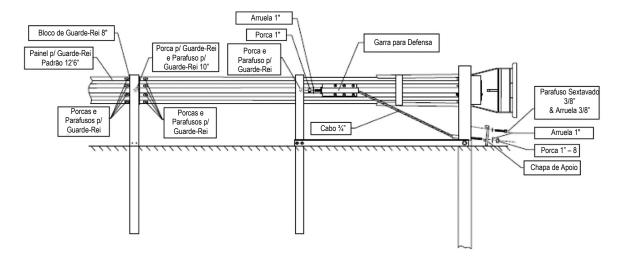

#### LISTA DE FIGURAS

| Plotagem                                                                                                                                                                                                                                                                                                                    | Página                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 1 Peças do Sistema SGET                                                                                                                                                                                                                                                                                                     | D-1                                                                |
| Peças do Sistema SGET                                                                                                                                                                                                                                                                                                       | D-2                                                                |
| Parafuso 5/8 de 10° comp.  Parafuso 1/2° de comp.  Parafuso 1/2° Arruela 1/2°  Arruela 1/2°  Porca p/ defensa  Arruela 5/8°  Porca 1/2°  Arruela 6 Pressão 1/2°  Arruela 6 Pressão 5/8°  Porca 5/8° | /2" de 2" de comp.  Juela 1/2"  Juela 1/2"  Juela 1/2"  Juela 1/2" |
| PEÇAS DOS POSTES QTDE Parafuso p/ defensa 12" — 5/8 X 12 307A HDG 1                                                                                                                                                                                                                                                         |                                                                    |
| Chapa de Impacto                                                                                                                                                                                                                                                                                                            |                                                                    |
| Bloco de Impacto 1 Porca p/ defensa-5/8-11 Porcas A563 HDG 1                                                                                                                                                                                                                                                                |                                                                    |
| Poste de Proteção de Madeira — 5-1/2 X 7-1/2 X 50 BCT 1                                                                                                                                                                                                                                                                     |                                                                    |
| Place de Filolégad de Madella — 3-1/2 x /-1/2 x 30 BC   1                                                                                                                                                                                                                                                                   |                                                                    |

Alicerce Tubular — Tubo Retangular de 6" X 8" X 6'
Parafuso 5/8" de 10" de comprimento — 5/8-11 X 10 A325 HOG


Porca 5/8"-5/9-11 A563 Porca Sext. Galvanizada

| Arruela 5/8"-5/8 F436(A325) HOG Arruela Lisa                 | 3 |
|--------------------------------------------------------------|---|
| Arruela de Pressão Galvanizada 5/8"                          | 1 |
| Parafuso 1/2" de 2" de comprimento — 1/2-13 X 2 A325 HDG     | 2 |
| Arruela 1/2" — 1/2 F436(A325) HOG Arruela Lisa               | 4 |
| Porca 1/2"-1/2-13 A563 Porca Sext. Galvanizada               | 2 |
| Arruela de Pressão Galvanizada 1/2"                          | 2 |
| Poste Secundário — Poste para Guarde-Rei W6 X 8,5 Modificado | 7 |
| Suporte de Suspensão — 3" X 3" X80" Ângulo                   | 1 |
| Luva Tubular — 2 3/8 OD X 4-1/4                              | 1 |

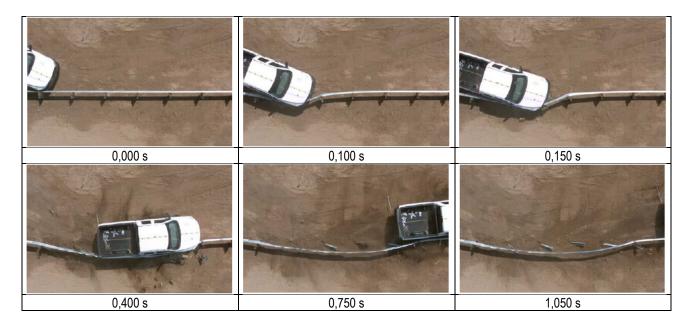



| PEÇAS DO PAINEL ESPECIALIZADO                                   | QTDE |
|-----------------------------------------------------------------|------|
| Painel Especializado                                            | 1    |
| Parafuso 1/2" de 1,25" de comprimento — 1/2,13 X 1,1/4 A325 HDG | 6    |
| Arruela 1/2" — 1/2 F436(A325) HOG Arruela Lisa                  | 12   |
| Porca 1/2"-1/2-13A563 Porca Sext. Galvanizada                   | 6    |
| Arruela de Pressão Galvanizada 1/2"                             | 6    |
| Placa de Reforço                                                | 1    |

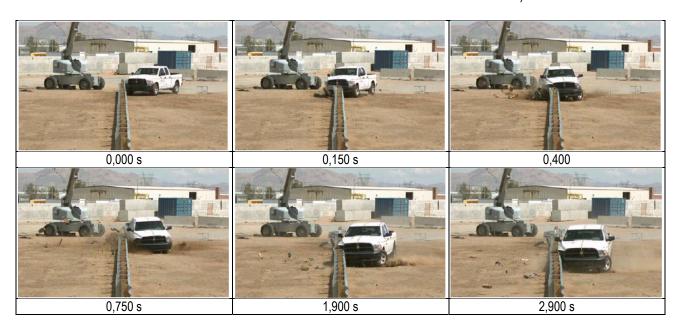
Figura 1: Peças do Sistema SGET



| PEÇAS DO CABEÇOTE DA DEFENSA                                 | QTDE |
|--------------------------------------------------------------|------|
| Cabeçote da defensa                                          | 1    |
| Parafuso Sextavado 3/8" — 3/8 X 3 GR5 HDG Parafuso Sextavado | 2    |
| Arruela 3/8" Galvanizada F844                                | 2    |
| Espaçador — CANO PVC 4" Compr. X 1-1/2 SCH-40                | 1    |
| Abraçadeira — 18"-24" de compr., classe de 175-200 lbs,      | 1    |
| Chip RFID de classe MIL-STD-810F (e.x.: Omni-ID EX0750)      | 1    |




| PEÇAS DA LÂMINA E CABO                                     | QTDE |
|------------------------------------------------------------|------|
| Cabo 3/4" — Cabo BCT 81" de compr.                         | 1    |
| Porca 1" —Porca Sext. 1-8 UNC Galvanizada A563DH           | 2    |
| Arruela 1" Galvanizada F436                                | 2    |
| Parafuso p/ Guarde-Rei — 5/8 X 1-1/4 307A HDG              | 25   |
| Parafuso p/ Guarde-Rei 10" — 5/8X 10 307A HDG              | 6    |
| Porca p/ defensa-5/8-11 Porca A563 HDG                     | 31   |
| Bloco de Guarde-Rei 8"                                     | 6    |
| Painel p/ Guarde-Rei Padrão 12'6"— M-180 perfil W          | 3    |
| Chapa de Apoio                                             | 1    |
| Parafuso Sextavado 3/8" — 3/8 X 3 GRS <b>H</b> DG Parafuso | 2    |
| Sextavado                                                  | Z    |
| Arruela 3/8" Galvanizada F844                              | 2    |
| Garra para Defensa                                         | 1    |


Figura 2: Peças do Sistema SGET

### Apêndice E

### **Fotografias Sequenciais**



[O restante da página foi deixado intencionalmente em branco]



Apêndice F

#### Referências

### Referências

- 1. Associação Americana de Oficiais de Estradas Estaduais e Transporte. "Manual de Avaliação de Componentes de Segurança, Segunda Edição" 2016.
- 2. Conselho de Pesquisa em Transporte. "Relatório 350 da NCHRP Procedimentos Recomendados para Avaliação do Desempenho de Segurança de Componentes de Estradas" Washington, D.C. Academia Nacional de Ciências, 1993
- 3. Sociedade de Engenheiros Automotivos. "SAE J224 MAR80, Classificação de Deformações por Colisão, Recomendação de Prática SAE, Versão de Março de 1980" SAE, Warrendale, Pensilvânia, 1980
- 4. Conselho Nacional de Segurança. "Escala de Danos Veiculares para Uso de Peritos de Acidentes de Trânsito", Chicago, Illinois, 1984

### ÚLTIMA PÁGINA DO RELATÓRIO

Nada mais. Conferi e achei conforme. Dou fé. São Paulo, 23 de março de 2020.

> ADMILSON FERNANDO SOARES DA SILVA TRADUTOR PÚBLICO JURAMENTADO